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Abstract. We study the effective mass of the bipolarons and essentially the possibility to get both light
and strongly bound bipolarons in the Holstein-Hubbard model and some variations in the vicinity of the
adiabatic limit. Several approaches to investigate the quantum mobility of polarons and bipolarons are
proposed for this model. First, the quantum fluctuations are treated as perturbations of the mean-field
(or adiabatic) approximation of the electron-phonon coupling in order to calculate the bipolaron bands. It
is found that the bipolaron mass generally remains very large except in the vicinity of the triple point of
the phase diagram (see [1]), where the bipolarons have several degenerate configurations at the adiabatic
limit (single site (S0), two sites (S1) and quadrisinglet (QS)), while the polarons are much lighter. This
degeneracy reduces the bipolaron mass significantly. Next we improve this result by variational methods
(modified Toyozawa Exponential Ansatz or TEA) valid for larger quantum perturbations away from the
adiabatic limit. We first test this new method for the single polaron. We find that the triple point of the
phase diagram is washed out by the lattice quantum fluctuations which thus suppress the light bipolarons.
Further improvements of the method by hybridization of several TEA states do not change this conclusion.
Next we show that some model variations, for example a phonon dispersion may increase the stability of
the (QS) bipolaron against the quantum lattice fluctuations. We show that the triple point of the phase
diagram may be stable to quantum lattice fluctuations and a very sharp mass reduction may occur, leading
to bipolaron masses of the order of 100 bare electronic mass for realistic parameters. Thus we argue that
such very light bipolarons could condense as a superconducting state at relatively high temperature when
their interactions are not too large, that is, their density is small enough. This effect might be relevant for
understanding the origin of the high Tc superconductivity of doped cuprates far enough from half filling.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.38.+i Polarons and electron-phonon
interactions – 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons,
resonating valence bond model, anion mechanism, marginal Fermi liquid, Luttinger liquid, etc.) –
74.25.Jb Electronic structure

1 Introduction

1.1 Specific problem for high Tc superconductivity

Superconducting materials at temperatures significantly
higher than the maximum Tc predicted by MacMillan [2]
for the standard BCS superconductivity [3] are excep-
tional [4]. Up to now, there is a wide variety of such
materials which are all cuprates built with CuO2 planes
and with many kinds of interlayer dopants [5].

When the electron-phonon coupling increases too
much, it is known for several decades (Migdal [6]) that the
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BCS theory should break down because of lattice instabil-
ities. These instabilities are associated with the formation
of polarons and bipolarons. Alexandrov et al. [7] developed
later a theory of bipolaronic superconductivity where the
electrons form strongly bound on-site bipolarons. They
are described by a hard core boson model which could
become superfluid. Unfortunately, their calculations also
show that when the electron-phonon coupling increases
beyond the Migdal instability, the effective mass of these
bosons grows exponentially fast and becomes so huge that
it seems hopeless to get superconductivity in this model,
at least at non-negligible temperatures.
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One of us (SA) conjectured in [8,9] that the interplay
of the electron-phonon coupling with a direct electron-
electron repulsion could reduce significantly the bipolaron
effective mass and thus favor high Tc superconductivity.
In the present paper we support this conjecture by cal-
culating the effective mass of a single bipolaron in a 2d
model which involves both an electron-phonon coupling
and a direct electron-electron repulsion. For this purpose
we choose to investigate first this effect in the Holstein-
Hubbard model because of its simplicity.

In the absence of Hubbard repulsion, we confirm that
the effective mass of the bipolaron is indeed very large [10],
which is incompatible with a high Tc superconducting
phase. When the Hubbard term is increased new bipo-
laronic states become stable. They are 2-site bipolarons
which consist of two neighboring polarons bound by their
magnetic interaction in a singlet state and also a bipo-
laron called a “quadrisinglet” (QS) which consists of the
combination of four singlets sharing one common site. In
the parameter region where these bipolaronic states have
nearly degenerate energies, the effective bipolaron mass
is sharply reduced. The drastic mass reduction is due to
resonance between the different bipolarons. Certain vari-
ations of the model, such as a phonon dispersion, might
even increase the binding energy of the bipolaron while
allowing it to keep a very light effective mass for realistic
parameters.

We first discuss some early known results about the
effective masses of polarons and bipolarons. Adiabatic re-
sults (Sect. 2) described in [1] are briefly recalled. Next
we treat the quantum lattice fluctuations as a perturba-
tion of the adiabatic limit. The main effect is to lift the
bipolaron degeneracy both due to translational invariance
and to the possible existence of several kinds of adiabatic
bipolarons with almost the same energy (Sect. 3). This
correction is only valid for a very small quantum lattice
parameter.

To extend the field of validity of our calculations we
next propose to use the Toyozawa variational form. Quan-
tum polarons and bipolarons are approximated by a self-
consistent Bloch wave that is exact at the adiabatic limit.
At this limit it is demonstrated in [1] that there is not a
great loss of accuracy if the shapes of polaron and bipo-
laron are exponentials. Thanks to this approximation we
gain much simplicity for the variational form. We first
apply this method to polarons (Sect. 4) and next to bipo-
larons (Sect. 5). For very small quantum lattice fluctua-
tions the results obtained by perturbation of the adiabatic
limit are practically recovered but there are significant de-
viations when the fluctuations become larger. First order
transitions that cannot exist physically are washed out by
hybridizing several Toyozawa variational forms. Actually,
the regime where the bipolaron mass is sharply reduced
is swallowed up in the domain where the ground-state is
unbound polarons. We demonstrate in Section 6 that this
undesirable phenomena can be avoided by variations of the
model which increase the stability of the (QS) bipolaron
(e.g. a phonon dispersion with the appropriate sign).

1.2 The Holstein-Hubbard model

Let us first recall our notations for the model we study
here. Its Hamiltonian is

H = −T
∑
〈j,k〉,σ

C+
j,σCk,σ +

∑
j

~ω0

(
a+
j aj +

1
2

)
+ gnj(a+

j + aj) + υnj,↑nj,↓ (1)

where j and k represent lattice sites, T is the transfer in-
tegral between nearest neighbor sites 〈j, k〉. The electrons
are Fermions represented by the standard anti-commuting
operators C+

j,σ and Cj,σ at site j with spin σ = ↑ or ↓.
ni,σ = C+

j,σCj,σ and ni = ni↑ + ni↓. a+
j and aj are stan-

dard creation and annihilation boson operators of phonons
and ~ω0 is the phonon energy of a dispersion-less optical
phonon branch. g is the on-site electron phonon coupling
and υ the on-site electron-electron repulsion (Hubbard in-
teraction).

We choose E0 = 8g2/~ω0 as energy unit as in [1].
Defining the position and momentum operators as

uj =
~ω0

4g
(a+
j + aj) (2)

pj = i
2g
~ω0

(a+
j − aj) (3)

with the commutation relation

[uj, pj ] = i (4)

we obtain the dimensionless Hamiltonian

H =
∑
j

1
2

(u2
j + ujnj) + Unj↑nj↓

− t

2

∑
〈j,k〉,σ

C+
j,σCk,σ +

∑
j

γ

2
p2
j . (5)

Our reduced dimensionless parameters are

E0 = 8g2/~ω0 U =
υ

E0

t =
T

E0
γ = α2 =

1
4

(
~ω0

2g

)4

. (6)

Despite the primitive nature of our model, it may catch
important aspects of reality. However, we shall also
demonstrate at the end of this paper that certain model
variations could be favorable for bipolaron mass reduction.
For example, we may introduce a coupling between near-
est neighbor atoms so that the phonon branch is no longer
dispersionless. Then the new Hamiltonian is the sum of (5)
and the extra energy term −C

∑
〈i,j〉 uiuj where 〈i, j〉 rep-

resents all the pairs of nearest neighbor sites i and j. When
C > 0, the bipolaron mass reduction is enhanced while it
remains strongly bound. Thus we demonstrate that rela-
tively minor changes in the model may favor (or disfavor)
superconductivity at relatively high temperature.
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1.3 Polaron and bipolaron effective mass

Let us first briefly recall some standard results about
the effective masses of polarons and bipolarons. The
Lang-Firsov unitary transformation [11] yields a new
Hamiltonian

HLF =
∑
j

1
2
u2
j + Unj↑nj↓ −

1
8

(nj↑ + nj↓)2

− t

2

∑
〈j,k〉,σ

e−i(pj−pk)/2C̃+
j,σC̃k,σ +

γ

2

∑
j

p2
j (7)

where HLF = e−iSLFHeiSLF with SLF = 1
2

∑
j pjnj .

After this transformation, the creation operator C̃+
j,σ

at site j acts on the vacuum by creating both an electron
and a lattice distortion

C̃+
j,σ|∅〉 = C+

j,σe−ipj/2|∅〉 (8)

that is, a polaron. A standard but rough mean-field ap-
proximation consists in taking the average of the transfer
integral for unperturbed phonons. We obtain an approxi-
mate formula for the transfer integral of this polaron

TLF = te−1/(8α). (9)

When there is a single electron in the system the electron-
electron interaction does not play any role. Then the ef-
fective mass of a single polaron is defined as the inverse
of the second order derivative versus the wave-vector q
of the polaronic energy E(q), that is, TLF. The effective
mass of the polaron is that of the bare electron multiplied
by exp [1/(8α)]. It becomes exponentially large when α is
small.

This approximation tends to become right only when
the operator corresponding to the transfer integral in
equation (7) has small fluctuations. This condition is ful-
filled when the pre-factor t is small. It is also fulfilled
when α is large, that is, for a weak electron-phonon cou-
pling g compared to the phonon energy ~ω0. In the an-
tiadiabatic limit (α large), the model becomes a Hubbard
model with an on-site effective electron-electron interac-
tion Ũ = (U − 1/4) which is attractive for U < 1/4 and
repulsive for U > 1/4 and where the transfer integral has
been renormalized. The negative U model is expected to
have superconducting phases [12] for non-vanishing band
filling. However, we treat here the opposite case α small
which is close to the adiabatic limit.

Actually when t is small, our numerical results agree
with formula (9). For larger t, the effective mass of the po-
laron given by (9) becomes larger than the mass we com-
pute. Note that our result should be more reliable because
it yields a lower variational energy for a single polaron.

The effective mass of the bipolaron has been calcu-
lated by Alexandrov et al. in the same limit (t small) [7]
for strongly bound bipolarons (that is, for U small) and
considering the kinetic energy term in equation (7) as a
perturbation. In our dimensionless units they found the

transfer integral tb for a bipolaron

tb =
4t2

1− 4U
e−1/(2α). (10)

If one extrapolates naively this formula for larger U , one
would find that tb becomes infinite. Of course, the asso-
ciated effective mass of the bipolaron cannot vanish, but
our results nevertheless demonstrate that it is sharply de-
pressed not far from the region U ≈ 0.25. Comparison
of formulas (9, 10) shows that in the region where both
α and t are small, the effective mass of the bipolaron is
much larger by many order of magnitude than the polaron
mass which is itself much larger than that of the bare elec-
tron. In most physically realistic situations, the bipolaron
masses are so huge that it is unreasonable to consider that
they could exhibit a Bose condensation [10].

We perform here a numerical calculation of the effec-
tive mass of the bipolaron (and also the polaron) in order
to show that in some specific regions of the parameter
space, when the Hubbard term becomes comparable with
the electron-phonon binding energy, these effective masses
can be drastically reduced so that Bose condensations of
bipolarons become plausible.

2 The mean-field Holstein-Hubbard model

We calculate first the adiabatic bipolarons which are
ground-state of a mean-field Hamiltonian. They are the
exact solutions in the adiabatic limit when γ = α2 is
zero (that is, when the atomic kinetic energy is negli-
gible). These spatially localized solutions are degenerate
under lattice translation. This degeneracy is lifted when
the atomic kinetic energy is taken into account. Within
a perturbative treatment, this explicitly gives bands of
extended bipolarons characterized by a wave-vector. The
inverse curvature of the lowest band at zero wave-vector
yields the bipolaron effective mass. This calculation be-
come exact in principle in the limit of small γ. Note that
similar methods were already developed in [13] to calcu-
late the effective masses of discommensurations in Charge
Density Waves.

2.1 The adiabatic regime

The Hamiltonian (5) can be written as the sum of three
terms

H = Hel +Hph +Hf (11)

where Hel and Hph are decoupled electron and phonon
Hamiltonians respectively and Hf is a fluctuation term.

Hel =
∑
i

(
1
2
ūini + Uni↑ni↓

)
− t

2

∑
〈i,j〉,σ

C+
i,σCj,σ (12)

Hph =
1
2

∑
i

(
u2
i + uin̄i − ūin̄i + γp2

i

)
(13)

Hf =
1
2

∑
i

(ui − ūi)(ni − n̄i) (14)
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n̄i and ūi are variational parameters which are determined
by minimizing the ground-state energy of the effective
Hamiltonian Had = Hel+Hph. It comes out that ūi = 〈ui〉
and n̄i = 〈ni〉 are the average of the corresponding op-
erators. The standard mean-field approximation for the
electron-phonon coupling consists in neglecting the fluc-
tuation energy Hf .

Minimizing the ground-state energy of Hamilto-
nian (13) also yields

〈ui〉 = −〈ni〉/2. (15)

Then, the ground-state of the mean field Hamiltonian Had

has the form

|Ψ〉 =

∑
i,j

ψi,jC
+
i,↑C

+
j,↓

 exp

(
i
∑
n

ūnpn

)
|∅〉. (16)

A pair of electrons with the electronic wave function ψi,j
is created as well as the corresponding lattice distortion
ūi. The electronic wave function is a singlet state, that
is, a symmetric function of (i, j): ψi,j = ψj,i. It fulfills an
extended nonlinear Schroedinger equation which is exactly
the same as in the adiabatic case at α = 0 [1].

− t
2
∆ψi,j +

(
− n̄i + n̄j

4
+ Uδi,j

)
ψi,j = Eelψi,j (17)

∆ is the four-dimensional discrete Laplacian and n̄i =
n̄i,↑ + n̄i,↓ with

n̄i,↑ =
∑
j

|ψi,j |2. (18)

The square root of the mean square lattice fluctuation
〈(ui − ūi)2〉1/2 = α = γ1/2 is small of order α. Thus, the
mean-field approximation obviously becomes exact in the
adiabatic limit α → 0 when there are no lattice fluctua-
tions.

2.2 Bipolarons from anti-integrable limit
and variational approximations

For an easy understanding the reader should refer to our
early paper [1] where the adiabatic (or mean field) bipo-
larons were investigated in detail in the two-dimensional
model by continuation from the anti-integrable limit
(t = 0).

The main result of [1] is that we found a quite rich
phase diagram with first order transition lines in the pa-
rameter space (U, t). For large t the electrons remain ex-
tended and do not self localize as bipolarons. For small
t there are several kinds of structures that compete to
be the bipolaron ground-state. These bipolarons were de-
noted (S0), (S1) and (QS). Bipolaron (S0) is mostly local-
ized at a single site and has square symmetry. Bipolaron
(S1) consists into a bound pair of polarons in a magnetic
singlet state localized on two neighboring sites. It breaks

the square symmetry and is oriented either in the x di-
rection (S1)x or the y direction (S1)y. The quadrisinglet
bipolaron (QS) is a combination of four singlet states with
a common central site and has square symmetry.

Interesting properties are obtained at a triple point
corresponding to the intersection of three first-order tran-
sition lines. At that point, and apart from the transla-
tional degeneracy, there are four different degenerate bipo-
larons (S0), (QS), (S1)x and (S1)y . We shall see that the
quantum lattice perturbations hybridize these degenerate
states and hence drastically enhance the bandwidth of
the bipolaron or, equivalently, reduce its effective mass.
Within a classical picture we already noticed that the
energy barrier (Peierls-Nabarro barrier) which has to be
overcome to move the bipolaron through the lattice was
drastically reduced.

We also investigated in [1] some approximations with
exponential variational forms for the bipolarons that al-
low analytical calculations. The exact phase diagram cal-
culated numerically was reproduced with a quite good ac-
curacy with the following forms

ψS0
i,j = Aλ(|ix|+|iy|+|jx|+|jy|) (19)

ψS1
i,j =

B√
2

(λ(|ix−1|+|iy|+|jx|+|jy|)

+ λ(|ix|+|iy|+|jx−1|+|jy|)) (20)

ψQS
i,j =

C√
8

∑
±
λ

(|jx|+|jy|)
2 (λ(|ix±1|+|iy|)

1 + λ
(|ix|+|iy±1|)
1 )

+ λ
(|ix|+|iy|)
2 (λ(|jx±1|+|jy|)

1 + λ
(|jx|+|jy±1|)
1 ) (21)

for bipolarons (S0), (S1) and (QS) respectively. A, B, and
C are normalization factors and the parameters λ, λ1 and
λ2 are optimized for energy minimization. We shall de-
velop here a quantum analogous version of these approxi-
mations to improve our methods.

3 Quantum lattice corrections

We now treat the mean-field fluctuationHf = 1/2
∑
i(ui−

ūi)(ni − n̄i) as a perturbation that lifts the translational
degeneracy of the mean field bipolarons (16), whose wave
functions are denoted |ΩS(j)〉 where S represents bipo-
larons (S0), (S1)x, (S1)y or (QS). The index j is the site
where the bipolaron (S) is located. For bipolarons (S1)x
and (S1)y which occupy two adjacent sites (jx, jy) and
(jx + 1, jy) or (jx, jy) and (jx, jy + 1), respectively, we
choose by convention j = (jx, jy). To treat the mean-field
fluctuation in lowest order, the initial Hamiltonian (11)
should be projected and diagonalized in the subspace gen-
erated by all these translated wave functions. We already
noticed that the bipolaron energies might be degenerate
or almost degenerate so that we should take into account
their possible hybridization. The eigenstates should have
the general form

|Ω〉 =
∑
S,j

aS,j|ΩS(j)〉 (22)
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where aS,j are coefficients to be determined by extremal-
ization of 〈Ω|H|Ω〉 with the normalization constraint
〈Ω|Ω〉 = 1. Both 〈Ω|Ω〉 and 〈Ω|H|Ω〉 are quadratic func-
tions of aS,j

〈Ω|H|Ω〉 =
∑

(S,i),(S′,j)

a∗S,iM(S,i),(S′,j)aS′,j (23)

〈Ω|Ω〉 =
∑

(S,i),(S′,j)

a∗S,iP(S,i),(S′,j)aS′,j (24)

where the coefficients of matrices P and M are defined as

P(S,i),(S′,j) = 〈ΩS(i)|ΩS′(j)〉 (25)

M(S,i),(S′,j) = 〈ΩS(i)|H|ΩS′(j)〉. (26)

It is important to take into account the fact that the eigen-
states of the self-consistent mean-field Hamiltonian Had

are not orthogonal one with each other, since the matrix of
scalar products is not diagonal. For two normalized wave
functions |Ω〉 and |Ω′〉 with the form (16) and with elec-
tronic wave functions {ψi,j} and {ψ′i,j}, electronic den-
sities n̄i = −2ūi and n̄′i = −2ū′i respectively the scalar
products equations (26, 25) can be calculated explicitly
for the Hamiltonian (5).

〈Ω|Ω′〉 = exp− 1
4α

(∑
i

(ūi − ū′i)2

)∑
i,j

ψ∗i,jψ
′
i,j

 (27)

〈Ω|H|Ω′〉 = N
α

2
〈Ω|Ω′〉+ exp− 1

4α

(∑
i

ūi − ū′i)2

)

×

1
2

(
∑
n

ūnū
′
n)× (

∑
i,j

ψ∗i,jψ
′
i,j)

+
1
4

∑
n,j

(ūn + ū′n)
(
ψ∗n,jψ

′
n,j + ψ∗j,nψ

′
j,n

)
+U

∑
i

ψ∗i,iψ
′
i,i −

t

2

∑
i,j

(
ψ∗i,j∆ψ

′
i,j

) (28)

where ∆ψi,j =
∑
ψk,l is the discrete Laplacian on a 4d

lattice.
The extremalization equation of 〈Ω|H|Ω〉 with respect

to A = {aS,j} with the normalization condition A∗ ·P ·A
= 1, is M ·A = EP ·A where E is the Lagrange parame-
ter, which is also the eigenenergy. It can be written as an
eigenvalue problem for the normalized vector B = P1/2 ·A

P−1/2 ·M ·P−1/2 ·B = EB. (29)

Note that the extensive term N α
2 〈Ω|Ω′〉 in the second

term of equation (28) does not disturb the calculations.
It yields a constant term N α

2 in the effective Hamiltonian
P−1/2 ·M · P−1/2 which is nothing but the zero point
phonon energy of the system with size N (without elec-
trons).

Because of the translation invariance of the model,
M(S,i),(S′,j) and P(S,i),(S′,j) only depends on j−i = n. As a
result, equation (29) can be diagonalized as combinations
of plane waves with the form BS,j(K) =

∑
S BS(K)eiKj

with wave-vector K which fulfills the eigenequation

P−1/2(K) ·M(K) ·P−1/2(K) ·B = Eν(K) B(K) (30)

with the Fourier coefficients

PS,S′(K) =
∑
n

P(S,j),(S′,j+n)eiKn (31)

MS,S′(K) =
∑
n

M(S,j),(S′,j+n)eiKn. (32)

Then the diagonalization of the 4 × 4 matrix P−1/2(K) ·
M(K) · P−1/2(K) yields the eigenenergies Eν(K).
Figure 1 shows an example of calculation of these four
bands in the vicinity of the triple point. Thus when there
are four bipolarons that are metastable (e.g. in the vicinity
of the triple point of the phase diagram) one obtains four
bipolaron bands Eν(K). Within our approach the number
of bipolaron bands is equal to the number of metastable
states for the adiabatic bipolaron which provides the base
about which we expand the eigenstates. In other regions
of the phase diagram the number of metastable bipolarons
changes, which induces (unrealistic) discontinuities for the
number of bands. For example, when U = 0 only the bipo-
laron (S0) is metastable, and there is only one bipolaron
band.

However the lowest bipolaron band does not exhibit
very sharp changes despite a small discontinuous varia-
tion. The reason that the upper bands are not reliable is
that the energies of these states might be also degener-
ate with phonon excitations of the bipolaronic states of
the lower band. The real excited states involve complex
hybridization between these states.

Conversely, the bipolaronic states with the lowest en-
ergies should not hybridize significantly with the higher
energy states involving phonon excitations. Thus we con-
sider that the lowest-energy bipolaron band provides a
reliable description of the bipolaron excitations close to
its ground-state. We use it to measure the bipolaron ef-
fective mass, that is, the inverse of the curvature Tb at
zero wave-vector K = 0. Tb is constant in all directions
because of the square symmetry (Fig. 1). It can be viewed
as the effective hopping coefficient for the bipolaron tun-
nelling through the lattice and can be compared with the
prediction of [7] given by formula (10), which is valid at
both U and t small.

Figure 2 exhibits the ratio Tb/tb as a function of the
effective transfer integral t for U = 0 for several values of
the quantum parameter α. For U small this ratio goes
to 1 when t goes to 0, which confirms the validity of
formula (10) predicted by Alexandrov et al. [7] in that
regime. We also note that beyond this regime when the pa-
rameters (U, t) are larger than 0, Tb becomes significantly
larger than tb, or equivalently the bipolaron effective mass
calculated numerically drops faster than predicted by (10).
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Fig. 1. Four bipolaron bands Eν(K) versus wave-vector K
computed close to the triple point where bipolarons (S0), (S1)
and (QS) are degenerate in energy (α = 0.017, U = 0.232, t =
0.08). Energies increase from bottom to top.

0.00 0.01 0.02 0.03 0.04
t

1.0
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Fig. 2. Ratio Tb/tb versus t of the transfer integral numerically
calculated and analytically predicted by formula (10) [7] (U =
0 and α = 0.022 (dot-dashed line), α = 0.017 (dashed line),
α = 0.01 (full line).

The insert of Figure 3 shows the bipolaron energy
gain compared to a pair of free electrons1 at U = 0 and
Figure 3 shows the effective transfer integral compared to
the bare electronic transfer integral, which is negligible
at the scale of the electronic energy. The bipolaron effec-
tive mass appears to be much beyond than 1010 electronic
masses even when its binding energy vanishes. It is clear
that this regime U = 0 is not favorable at all for the Bose
condensation of such bipolarons that should occur below a
critical temperature inversely proportional to the effective
mass of the quasi-particle.

When the Hubbard term increases for relatively
small t, Figure 4 (t = 0.04) shows that a sharp discon-
tinuity occurs when the ground-state bipolaron becomes
(S1) U > 0.25. There is a sharp increase of the tunnelling
energy by five orders of magnitude for this bipolaron at
α = 0.01. In that case the Peierls-Nabarro barrier calcu-
lated in the previous paper [1] is still very high and conse-
quently there is almost no hybridization between (S0) and
(S1). The smoothing of the discontinuity of the tunnelling
energy is thus hardly visible.

When t is larger, the bipolaron (QS) becomes stable for
U ≈ 0.23 and hybridization between (S0), (S1) and (QS)
becomes significant. Actually the most important contri-
bution to the tunnelling energy of the bipolaron comes
from the hybridization between (QS) and (S1). It is re-
sponsible for the sharp increase of the tunnelling energy
or equivalently the sharp drop of the bipolaron effective
mass. This quantum mobility is favored when (QS) and
(S1) are degenerate in energy and separate by a weak
Peierls-Nabarro barrier. Then (QS) may tunnel to one
of the four neighboring (S1) and the latter tunnels to
its neighboring (QS) that corresponds to the initial one

1 The energy gain compared to a pair of free electrons is
not an accurate binding energy for the bipolaron. The bipo-
laron binding energy is precisely measured with respect to an
unbound polaron state that is defined in the next section.
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Fig. 3. Ratio Tb/t versus U at t = 0.04 and α = 0.01; insert:
Bipolaron energy gain compared to a pair of free electrons
versus t at U = 0.

translated by one lattice spacing in the direction of (S1)
and so on. The bipolaron tunnelling energy could reach
10−3 the bare electronic energy which is not negligible
anymore.

Let us point out that such a high mobility can-
not be obtained within the approximations used in [7]
which do not consider the possible degeneracies of sev-
eral bipolarons. The conclusions of [10] about the physical
impossibility of bipolaronic superconductivity are irrele-
vant for that situation.

4 Variational calculation of quantum polarons

In principle the above approach is valid only for very small
α: that is, when the quantum lattice fluctuations are small.
However these fluctuations may increase drastically, espe-
cially close to the first-order transitions when there are
several degenerate bipolarons that we are especially inter-
ested in. Thus it is worthwhile to improve our previous
calculations by a variational approach which should be
equivalent to the mean field perturbation for small quan-
tum lattice fluctuations.

Our purpose is now to develop a quantum version of
the variational forms [14] used and tested in the adiabatic
case but which could hold for larger values of α. Our
approach is a simplified version of those of Toyozawa
(see [15,16] for a recent application to the polaron in 1D).
We first test this method for the single polaron and will
extend it in the next section for the bipolarons of the
Holstein-Hubbard model.

Because of the invariance of the system under trans-
lations the wave function of a quantum single polaron is
written as a Bloch wave:

|ΩP (K)〉 =
1√
Λ

∑
n

e−iKn|ΨP (n)〉 (33)

where Λ is a normalization factor and |ΨP (n)〉 is obtained
from a unique wave function |ΨP (0)〉 changing all the in-
dices i of its electronic and atomic variables into i+n. This

0.18 0.28 0.38 0.48
U

0.
0e

+
00

5.
0e

−
07

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

T
b/

t

t=0.04

0.21 0.24 0.27 0.30 0.33
U

0.
00

0
0.

00
2

0.
00

4
0.

00
6

T
b/

t

t=0.08

Fig. 4. Ratio Tb/t versus U at t = 0.04 (top), Tb/t versus U
at t = 0.08 (bottom) (α = 0.01).

transformation is nothing but a shift of the wave function
from site 0 to n.

4.1 Toyozawa approximation

A simple variational approximation proposed by
Toyozawa is to assume that the local wave function
is similar to the mean-field polaron:

|ΨP (j)〉 =
∑
k

(
ψPk−jC

+
k

)
exp

(
i
∑
l

vl−jpl

)
|∅〉. (34)

To simplify the spin of the electron is omitted. For each
wave-vector K the variational energy

〈ΩP (K)|H|ΩP (K)〉 =

∑
p eiKp〈ΨP (j)|H|ΨP (j + p)〉∑
p eiKp〈ΨP (j)|ΨP (j + p)〉

(35)

is a function of the scalar products which does not depend
on j

〈ΨP (j)|ΨP (j + p)〉 =

exp− 1
4α

∑
i

(vi+p − vi)2

(∑
i

ψ∗i+pψi

)
(36)
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〈ΨP (j)|H|ΨP (j + p)〉 = exp− 1
4α

∑
i

(vi+p − vi)2

×
[(∑

n

1
2

(α + vn+pvn)

)
× (
∑
i

ψ∗i+pψi)

+
1
4

∑
n

(vn+p + vn)ψ∗n+pψn −
t

2

∑
i

(
ψ∗i+p∆ψi

)]
(37)

and has to be extremalized with respect to the 2N param-
eters corresponding to the electronic wave function {ψPj }
and the lattice distortion {vl}. This form becomes exact
in the adiabatic limit and should improve the previous
perturbation theory as it is self-consistent.

A relation between the electronic density and the av-
erage of the atomic displacement can be easily taken into
account in this variational form. First, let us recall that
the true eigenfunctions ofH are extrema of 〈Ψ |H|Ψ〉 in the
full space of normalized functions Ψ . For a given normal-
ized eigenfunction Ω of H we can consider the one param-
eter family of normalized functions Ψ(δ) = exp (iδpj)|Ω〉
where the coordinate uj of the atom j is changed into
uj + δ. The variational energy of this wave function is
〈Ψ(δ)|H|Ψ(δ)〉 which is equal to 〈Ψ(0)|Hδ|Ψ(0)〉 where
Hδ = exp−(ipjδ)H exp (ipjδ) is simply obtained from H
by changing uj into uj − δ. The variational energy

〈Ψ(δ)|H|Ψ(δ)〉 = 〈Ω|H|Ω〉

− 1
2
δ (2〈Ω|uj |Ω〉+ 〈Ω|nj |Ω〉) +

1
2
δ2 (38)

should be extremal for δ = 0, which implies

〈Ω|uj |Ω〉 = −1
2
〈Ω|nj |Ω〉. (39)

This result is nothing but an extension to the non-
adiabatic case of the standard relation between the av-
erage atomic positions and the electronic densities.

If we now consider an extremum of 〈Ω|H|Ω〉 for
|Ω〉 normalized in the variational space defined by
equations (33, 34) this space is no longer invariant
under the unitary operator exp{iδpj}, but it still re-
mains globally invariant under operator exp{iδ

∑
j pj}

which performs a uniform displacement by δ of all the
atoms. We apply the same argument as above that
is, study 〈Ω(δ)|H|Ω(δ)〉 where Ω(δ) = exp{iδ

∑
j pj}Ω

is extremal for δ = 0. This condition yields∑
j〈Ω|uj |Ω〉 = −1/2

∑
j〈Ω|nj |Ω〉. For the variational

extrema with the Toyozawa forms (33, 34), we find
〈Ψ(l)|

∑
n un|Ψ(m)〉 = (

∑
n vn)〈Ψ(l)|Ψ(m)〉, which read-

ily implies
∑
j〈Ω|uj |Ω〉 =

∑
n vn. For the polaron, that

is, for a system with only one electron the extremum of
the Toyozawa forms (33, 34) necessarily fulfills

∑
n

vn = −1
2
· (40)

4.2 Toyozawa exponential approximation: TEA

Minimizing the variational form (35) for the whole set of
2N − 1 parameters {ψi} and {vi} with condition (40) is a
complex numerical task which moreover will become even
more complex when extended to the bipolaron problem.
However, we can expect that the behavior of the varia-
tional parameters {φn} and {vn} will not be far from ex-
ponential at infinity. Thus assuming simple exponentials
for {φn} and {vn} should not be a bad approximation as
proposed in [14] at the adiabatic limit. Taking into ac-
count the normalization and condition (40) we postulate
that the electronic wave function and the atomic modula-
tion have the form:

ψPi = Aλ|ix|+|iy| A−1 = (1 + λ2)/(1− λ2) (41)

vPi = −Bµ|ix|+|iy| B−1 = 2(1 + µ)/(1− µ) (42)

for each wave-vector K there are only two variational pa-
rameters λ(K) and µ(K) instead of 2N for the original
Toyozawa ansatz which allows much simpler calculations
although we still need a numerical minimization of (35).
To that aim we use a simplex method [17], which is the
most efficient algorithm we tested because it avoids any
precision problem due to the numerical computation of
the derivatives.

The Toyozawa exponential ansatz (TEA) turns out to
be almost as good as the full ansatz when the polarons
are small, since in that case the exponential approximates
quite well its shape. When the size of the polaron becomes
larger, the TEA (as well as the original Toyozawa ansatz)
yields a first order transition. This first order transition
is well-known to exist at the adiabatic limit α = 0 where
the ground state of a single electron undergoes a first order
transition from a small polaron to a free electron [14,18]
at t = tp ≈ 0.07486.

We define the binding energy of the quantum polaron
as the difference between the energy of the extended elec-
tron at zero wave-vector K = 0 and that of the bottom of
the polaron band. Figure 5 shows the variation of the bind-
ing energy versus t for the quantum polaron calculated in
several different approximations including the assumption
that:

1) the polaron band is calculated as for the bipolaron
bands (Sect. 3) from perturbation of the mean field
polaron (thin dashed line);

2) the polaron band is hybridized with the free electron
band (thin full line);

3) the polaron band is calculated with the TEA approxi-
mation (thick dashed line);

4) the polaron band is calculated with the HTEA approx-
imation where small and large polarons are hybridized
(thick full line) (see next section for details).

When the quantum lattice fluctuations are small (which
occurs either at the adiabatic limit α = 0 or when t is
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Fig. 5. Binding energy of the quantum polaron versus t at
α = 0.017 calculated with several approximations as explained
in the text and magnification (insert).

small), these approximations yield practically the same re-
sult. When α 6= 0 the best variational form is that which
gives the lowest energy for the ground-state (that is, the
largest binding energy). The results of these approxima-
tions become significantly different when t approaches the
critical value tp at which the adiabatic first order tran-
sition occurs. Each of these approximations improves the
previous one, since the polaron energy becomes lower at
each step.

It is clear that approximations (1, 2), which keep
the polaron shape rigidly fixed to that at the adia-
batic limit, are not appropriate to remove the first-order
transition (see Fig. 5). The TEA approximation (3) also
yields first-order transitions, but there are two distinct
transitions occurring at t = t1p(α) < tp and t = t2p(α) > tp
and the amplitudes of energy discontinuities are weak be-
cause the polaron shape is determined self consistently.

Figure 6 shows λ and µ values that minimize (35) at
K = 0. The first of the TEA transitions (t1p(α) < tp)
occurs between a small and a large polaron (see Fig. 6)
and t1p(α) decreases when α increases before that transi-
tion disappears for α > 0.03. The second TEA transition
(t2p(α) > tp) persists for large (α > 0.7) but it is hardly
distinguishable on the binding energy plot (Fig. 7). The
transition occurs between a large polaron and a quasi-free
electron with an extended phonon part (that is, µ(K = 0)
tends to 1 when t is large).

Note also that λ(K = 0) may become negative in the
regime of large t and small α but then the polaron binding
energy becomes negligible so that it is meaningless to use
a polaron picture for a regime that is better described as
a Fermi liquid.

4.3 Smoothing the first order transition: HTEA

Actually, any first-order transition for the polaron ground-
state (or the bipolaron) which would be obtained by any
variational method cannot exist physically. The reason is
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Fig. 6. Variational parameters versus t for the TEA approxi-
mation of the polaron λ(K) (thick lines) and µ(K) (thin lines).
µ(K) (thin lines). Wave vector K is zero and α = 0.017 (full
lines) and α = 0.03 (dashed lines).
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(α = 0.01). Magnification of the two first order transitions of
the TEA (inserts).

that at the transition point there are two approximate
wave functions with the same variational energy which are
supposed to approximate the ground-state. It is possible
to hybridize these two degenerate states to obtain a new
state with a lower energy. The same arguments hold for
the exact ground-state, which cannot exhibit any first-
order transition.

On the basis of these arguments, we demonstrate nu-
merically that the two first-order transitions obtained with
the TEA of polaron can be smoothed using a variational
form for the wave function ΨP (0) in equation (33) which
hybridizes three wave functions,

ΨP (0) = β1Ψ
P
1 (0) + β2Ψ

P
2 (0) + β3Ψ

P
3 (0). (43)

Each of these wave functions has the TEA forms (41, 42)
with parameters λ1, µ1, λ2, µ2 and λ3, µ3 respectively.
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Hybridizing three wave functions instead of two has the
advantage of sweeping out simultaneously the two succes-
sive first order transitions. The variational energy (35)
now depends on 9 parameters λS , µS , βS with S ∈
{1, 2, 3}. Let us note

MS,S′(K) =
∑
p

eiKp〈ΨPS (j)|H|ΨPS′(j + p)〉 (44)

and

PS,S′(K) =
∑
p

eiKp〈ΨPS (j)|ΨPS′(j + p)〉 (45)

where (S, S′) ∈ {1, 2, 3}2. We point out that because of
the central symmetry of the TEA, the 3 × 3 matrices M
and P are real. Then the energy of the ground-state E(K)
has the following variational form:

〈ΩP (K)|H|ΩP (K)〉 =

∑
S,S′ βSβ

∗
S′MS,S′∑

S,S′ βSβ
∗
S′PS,S′

· (46)

The extremalization of E(K) (Eq. (46)) with respect to
β∗1 β

∗
2 and β∗3 yields the set of three equations

∑
S

βSMS,S′ −E(K)

(∑
S

βSPS,S′

)
= 0,

and therefore we have to solve eigenvalue problem Mβ =
E(K)Pβ: that is, E(K) is the lowest eigenvalue of the ma-
trix P−1/2(K)M(K)P−1/2. That calculation is very simi-
lar to the perturbative method of the mean-field described
previously in the case of the bipolaron but here the lowest
eigenvalue E(K) has still to be minimized with respect to
the set of six parameters (λS , µS).
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Fig. 9. TEA bands (thin lines) and HTEA bands (thick lines)
ES(K) (full lines) and EL(K) (dot-dashed) in the Kx direction
at α = 0.017 at t = 0.055 < t′p(α) (left) and t = 0.06 > t′p(α)
(right).

For small t we recover the TEA results (that is, only
one β is non negligible, Fig. 5). Close to the TEA first-
order transitions the variational ground-state appears as
the hybridization of either a small polaron and a large
polaron or a large polaron and a quasi-free electron (very
large polaron). A significant increase of the binding en-
ergy of polaron results from this hybridization in these
crossover regions where the first order transitions are
smoothed and thus removed Figure 7. Furthermore our
calculations show that the energy gain due to hybridiza-
tion persists for large t values. In that regime the fluctua-
tions of the quantum lattice are strong enough to hybridize
two TEA states, the large polaron and the quasi-free elec-
tron, whose energies differ only slightly.

A consequence of the hybridization can be also ob-
served on the shapes of the polaron bands. In the adia-
batic limit (α = 0), the small polaron is degenerate un-
der arbitrary lattice translations, which means that the
polaron band is perfectly flat, as shown in Figure 8. In
the regime where the polaron is metastable for t > tp,
the flat polaron band intersects the free electron band so
that there is a line of wave-vectors where the small po-
laron state and the free electron state are degenerate (see
Fig. 8). With nonvanishing quantum lattice fluctuations
(α 6= 0), the degeneracies are lifted along the intersection
line. Approximation 2 provides an important correction
in the vicinity of tp where the adiabatic polaron becomes
extended. Around the degenerate line there is a cross-over
region in wave-vector where the component of the free
electron to the ground-state varies from almost 1 to al-
most 0 when K goes from 0 to π and the opposite for the
component of the small polaron. Thus there is a smooth
exchange of the quantum state from the large to the small
polaron (Fig. 9). This exchange also occurs for the upper
band but in reverse order from the small polaron to the
large polaron.
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TEA (thick lines).

In the band of the TEA, for t1p(α) < t < t2p(α) only
one first-order transition is observed in K space between
a small polaron and a large one. For t > t2p(α) two first
order transition might be observed in K space at dif-
ferent K values and they occur between the three kinds
of polaron described previously. They are smoothed with
the HTEA.

The effective polaron mass is the inverse curvature
1/Tp at the bottom of the lowest polaron band at K = 0.
It can be calculated as a function of t and α and com-
pared with the value 1/TLF obtained from the Lang-Firsov
transformation (9). The variation versus t of the ratio
Tp/TLF is shown Figure 10 for different α. For α small,
this ratio Tp/TLF is almost one, which confirms that the
mean-field approximation used to establish formula (9) is
valid for both quantum lattice fluctuations and t small.
When t increases from zero the ratio Tp/TLF increases
from unity, which means that equation (9) overestimates
the polaron effective mass. We already observed this effect
for the bipolaron case in the formula (10). However this
effect does not imply sharp variations.

To compare the polaron mass and the bare electronic
mass, the ratio Tp/t is plotted Figure 11 for different val-
ues of α. For large t as well as for large α, the polaron
effective mass reduces to the bare electron mass. In other
words the electron becomes practically free.

When α is small, there is a sharp drop in the inverse ef-
fective polaron mass, which is reminiscent of the first order
transition at α = 0 between the localized small polaron
and the extended electron. This sharp variation becomes
smoother and smoother as α increases.

Figure 11 compares the binding energy of the polaron
and its tunnelling energy Tp. For small t, the binding en-
ergy is much larger than Tp, while for large t it becomes
much smaller. There is a value t = tc(α) where both en-
ergies are equal. In the vicinity of this region the polaron
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Fig. 11. Polaron tunnelling energy Tp (thick lines) and its
binding energy (thin lines) versus t at α = 0.01 (left), α = 0.09
(right) calculated with the HTEA method. Inserts: ratio Tp/t
versus t.

has maximum mobility while it remains reasonably well-
bound (compared to this tunnelling energy!).

5 Variational calculation of quantum
bipolarons

The variational methods (34) we used for the single po-
laron can be extended to bipolarons with variational forms
(S0), (S1) and (QS). For this purpose we write the bipo-
laron wave function as a Bloch wave:

|ΩB(K)〉 =
1√
Λ

∑
j

e−iKj |ΨB(j)〉, (47)

and we postulate an extended Toyozawa form for the local
wave function

|ΨB(0)〉 =

∑
j,k

ψBj,kC
+
j,↑C

+
k,↑

 exp

(
i
∑
l

vBl pl

)
|∅〉.

(48)

5.1 TEA quantum bipolarons

The simple TEA approximation for the bipolaron consists
in choosing ψBj,k with the form (19) for B = (S0), (20) for
B = (S1) or (21) for B = (QS) and vl with exponential
forms which depend on the type of bipolaron as follows:

vS0
l (0) = −CS0µ

|lx|+|ly|
S0 (49)

vS1x
l (0) = −CS1[µ|lx|+|ly|S1 + µ|lx−1|+|ly|] (50)

vQS
l (0) = −CQSµ

|lx|+|ly|
QS . (51)
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dashed).

The same arguments used to prove equation (40) imply∑
n

vBn = −1, (52)

which determines the parametersCS0, CS1 and CQS. Using
the scalar product formulas (27, 28), the variational en-
ergy (35) is calculated numerically and minimized with
respect to both λ and µ parameters for each value of
the wave-vector K and for each bipolaron (S0), (S1)
or (QS) (see Fig. 13). This variational form still has a
small number of parameters which allows a fast numerical
minimization.
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Fig. 14. Phase diagram of the TEA bipolarons (S0), (S1),
(QS) and a pair of unbound polarons for α = 0 (thin dashed
line), α = 0.001 (thick dashed line), α = 0.0016 (full thin line),
and α = 0.01 (full thick line). The case α = 0 is the adiabatic
case already calculated in reference [1].

The minimum energy is always found to be at the
bottom of the lowest band at K = 0. The quantum
corrections to the energies of bipolarons (S0), (S1) and
(QS) are compared with the energy of two polarons far
apart. We use the HTEA result described in the previous
section (Fig. 12), since we know that it yields the low-
est and thus the most accurate energy for the quantum
polaronic ground-state.

As for the TEA polaron each TEA bipolarons (S0),
(S1) or (QS) exhibits a first-order transition when t in-
creases between a small and a large bipolaron with the
same symmetry. Actually if one compares the energies of
all the possible solutions these large bipolarons are found
never to be the ground-state whatever α is, because a pair
of single quantum polarons has always less energy. As a
result, these bipolarons always gain energy by breaking up
into two polarons (Fig. 12) even for large α.

In the adiabatic limit (α = 0), these TEA calculations
become identical to the variational calculation which was
described in [1] (see Fig. 14). Comparing the energies of
these TEA bipolarons (without any hybridization) we con-
struct a new phase diagram for α non zero with first-order
transition lines and test how it changes when the quantum
lattice parameter α increases.

The approximate calculations of the tunnelling energy
for the polaron (9) and for the bipolaron (10) suggests
that for U sufficiently different from 1/4 the tunnelling of
a single polaron with one electron is much easier than that
of a bipolaron, which contains two electrons and moreover
involves a bigger lattice distortion. Thus, one should ex-
pect more generally that the energy gain generated by
the quantum lattice fluctuations for the single polaron is
systematically much larger than that for the bipolarons.
As a result, the domain of parameters where the ground-
state consists of an unbound pair of large polarons should
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extend at the expense of the domains of the bipolarons
when α increases.

Indeed Figure 14 confirms that the first-order transi-
tion lines which exist in the adiabatic limit shift to lower
values of t when α increases. As a consequence the domain
of existence of the (QS) bipolaronic ground-state shrinks
to zero for a rather small value (approximately 0.002) of
α and completely disappears for larger values.

The disappearance of the triple point of the phase di-
agram between bipolarons (S0), (S1) and (QS) for rela-
tively small values of α seems to rule out our suggestion
that bipolarons could become very light. We show how to
recover this possibility in the last section by minor changes
in the model which may restore this triple point for rela-
tively large values of α.

5.2 HTEA quantum bipolarons

We carefully examined whether the HTEA calculation of
bipolarons, which in principle should be more accurate,
could change this conclusion. Actually, it will not change
it, and to not confuse or bother the reader, all details of
our unsuccessful (but useful) numerical investigations are
not presented.

As said previously, in principle no first-order transi-
tions could exist for the ground-state of a pair of elec-
trons interacting with the lattice. They are removed by
hybridization of all (or only those which are relevant), de-
generate bipolaron solutions (S0), (S1) or (QS) both small
and large, which necessarily generates some energy gain.

The HTEA calculation for the bipolaron is similar to
that for the polaron except that it may involve more bipo-
laronic states. We assume generally that the wave function
ΨB(0) (47) is a normalized combination of n wave func-
tions (n depends on the number of TEA which hybridize)

|ΨB(0)〉 =
∑
S

βS |ΨBS (0)〉 (53)

which may have different bipolaronic forms S = (S0),
(S1x), (S1y), (QS) each of which can be small and large, so
that in principle there are 8 different states. However, we
have not use simultaneously all these states since there are
no situations in the parameter space t, U where all their
energies are simultaneously degenerate but only a relevant
subset2.

Then the energy of the ground-state E(K) has the
following variational form:

〈ΩB(K)|H|ΩB(K)〉 =

∑
S,S′ βSβ

∗
S′MS,S′∑

S,S′ βSβ
∗
S′PS,S′

, (54)

where

MS,S′(K) =
∑
p

eiKp〈ΨBS (j)|H|ΨBS′(j + p)〉 (55)

2 Actually using all of them practically does not change the
result because the irrelevant states hardly hybridize with the
others.

and

PS,S′(K) =
∑
p

eiKp〈ΨBS (j)|ΨBS′(j + p)〉. (56)

The extremalization of (54) with respect to βS is done
by a diagonalization of the matrix P−1/2(K)M(K)P−1/2

of size n × n. The variational energy is minimized with
respect to parameters of equation (53).

In all regions of the phase diagram, for small α the
HTEA energy corrections for the bipolarons (S0), (S1) or
(QS) are systematically much smaller than those involved
by the polarons. The tunnelling energy of bipolarons is
much smaller than those of the polaron.

The hybridization cross-overs which are found at each
smoothed first-order transition of the TEA phase diagram
remain very narrow and the hybridization energy gain is
negligible. One needs to have a high bipolaronic degener-
acy such as the triple point or a relatively large value of
α (α ≥ 0.05) to observe non negligible crossovers. Even
in that case the energy gains remain small compared to
those of an unbound pair of the HTEA polarons.

If the HTEA bipolarons keep almost the same energy
as the TEA bipolarons, the phase diagram Figure 14 is
practically unchanged. Of course, the first-order transi-
tion lines which appear in this phase diagram should now
be viewed as sharp crossover lines. The crossover between
the bound bipolarons and the unbound pair of polarons
has been investigated with a general HTEA bipolaron
form (including the latest) but no significant hybridiza-
tion has been found between these two kinds of states so
that we can not draw a conclusion about the nature of this
transition.

The triple point is a special point of the phase diagram
where the bipolarons (S0), (S1) and (QS) are degenerate
and where we should expect a higher energy gain by hy-
bridization when α is not too small. Unfortunately, this
triple point disappears when α increases beyond approxi-
mately 0.002. When it just disappears the TEA bipolaron
binding energy referred to two unbound HTEA polaron
is just zero but then its tunnelling energy Tb is maximum
(but still only 10−7×t: that is the bipolaron effective mass
is seven order of magnitude larger than those of the bare
electron).

The negative conclusion of this section is that more
sophisticated variational calculations does not confirm the
conclusion of Section 3 which was based on the assumption
α small extrapolated to larger α.

The present study also shows that in the domain of
small U one may have a quantum bipolaron ground-state
with a large tunneling energy occurring at very large
α > 0.1. This result is simply obtained with only the TEA
of the small bipolaron (S0) that is proved to have a non
negligible binding energy for both t and U small enough.
Nevertheless, this result is not relevant for such large α,
our approach based on a perturbative theory of the adia-
batic limit fails because of too large quantum lattice fluc-
tuations.
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Fig. 15. Ground-state phase diagram for Hamiltonian (58) at
C = 0.1 (thick full lines) compared to the initial case C =
0 (thin full lines), and approximate diagrams calculated with
the bipolaron exponential ansatz (thin dashed lines) for same
couplings C = 0, C = 0.1.
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Fig. 16. Frequencies versus U of the internal modes of bipo-
laron (S0) (full lines), (S1) (dashed lines), (QS) (dot-dashed
lines), for t = 0.04 (left) and t = 0.09 (right). The breathing
modes are represented by thick lines and the pinning modes
by thin lines. Vertical lines determine the location of the first
order transitions.

6 Phonon dispersion effect

We intend to show that highly degenerate point that could
persist under large quantum lattice fluctuations implies
very light bipolarons. To achieve that goal, a simple pro-
cedure consists in changing the model so as to favor the
bipolaron (QS). If we could make it more robust to quan-
tum lattice fluctuations it should become very light for
reasonably large α by hybridization with the other degen-
erate bipolarons at the triple point.

We choose to introduce a phonon dispersion, but this
might not be the unique way. When an electron is present
at a given site it will also distort the lattice at the neigh-
boring sites. If the sign of the dispersion is appropriate, the
lattice potential at the neighboring sites is lower which fa-
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U

0

0.05

0.1

0.15

t

Fig. 17. Same as Figure 14 but with a phonon dispersion
C = 0.3 calculated exactly in the adiabatic limit (thick full
lines) and approximated with the exponential ansatz (thin full
lines).

vors its occupancy by electrons and thus the spatial exten-
sion of the bipolaron. The bipolaron (QS) which is more
extended than the bipolaron (S0) should be favored3.

We consider the new Hamiltonian

Hd = H− c
∑
〈i,j〉

(a+
i + ai)(a+

j + aj) (57)

where H is the Holstein-Hubbard Hamiltonian (1) and its
reduced Hamiltonian corresponds to H (5) that gives

Hd = H − C

4

∑
〈i,j〉

uiuj (58)

with

C =
4c
E0

(
4g
~ω0

)2

. (59)

When the coupling C is positive the dispersive term gener-
ates an effective attractive interaction between polarons.
This coupling cannot exceed the value 1/2 beyond which
the low wave-vector phonons becomes unstable.

6.1 Adiabatic limit

At the adiabatic limit equation (15) becomes

〈ui〉 = −1
2

∑
j

D−1
i,j 〈nj〉 (60)

where D is the matrix:

Di,i = 1

Di,i±1x = Di,i±1y = − c
2

Di,j = 0 otherwise. (61)

3 Phonon dispersion may induce other important effects in
the bipolaron structure as shown in [19] for CDW’s.
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Fig. 18. Profiles of electronic density (empty symbol) and absolute value of the displacement (full symbol) versus site in x
direction for the adiabatic bipolarons (S0), (S1) and (QS) at the triple points: C = 0. t = 0.078 U = 0.233 (squares linked by
full lines), and C = 0.3 t = 0.0904 U = 0.222 (circles linked by dot-dashed lines).

Bipolarons (S0), (S1), (QS)... which were found at the
anti-integrable limit of the Holstein-Hubbard model at
t = 0 persist as ground-states in this model with nonzero
coupling C [1] (see diagrams 15 and 17). The domain
where bipolaron (QS) is the ground-state enlarges when C
increases up to its maximum value 1/2. As expected the
existence of a positive dispersion favors the quadrisinglet
ground-state.

The first-order transition between bipolaron (S0) and
(QS) becomes almost second-order and difficult to dis-
tinguish numerically since there is no symmetry breaking
between these two bipolaronic states. Then as expected,
there is a soft internal mode which almost vanishes at the
transition on both side of the transition which corresponds
to a breathing mode of the bipolaron with the same sym-
metry. Simultaneously the Peierls-Nabarro barrier almost
vanishes.

This soft mode which does not break the bipolaron
symmetry is not a pinning mode and does not favor the
classical mobility of this bipolaron. To that purpose the
pinning mode which also softens at the first order transi-
tion between (QS) and (S1) is the most appropriate (see
Fig. 16 and Refs. [1,20]).

When the coupling C is too large 0.2 < C < 0.5 our
accuracy is limited in practice because of the bipolaron
(QS) extension, which requires large system sizes we can-
not afford. This problem occurs especially close to the

first-order transition between bipolaron (QS) and the ex-
tended state (see diagram 17). However the exponential
ansatz equations (19–21) still fits quite well the bipolaron
ground-state as shown in diagram 15. These variational
forms allow us to compute quickly the bipolarons even
for large C values and to determine approximately the
ground-state with a reasonable accuracy (see diagrams 15
and 17).

As we already know the flaw of this approximate
method is that spurious first-order transitions may oc-
cur. This situation happens nearby the first-order tran-
sition between (QS) and the extended state as seen in
diagram 17. It is due to the exponential ansatz which does
not provide a good fit of the bipolaron when it becomes
more extended.

However, at the triple point the bipolaron ground-state
is still localized on very few sites (Fig. 18) for C = 0.3 and
the exponential ansatz remains sufficiently accurate.

6.2 Quantum corrections

Same methods, as those used above for the original
Holstein-Hubbard model are applied to deal with the
quantum lattice fluctuations of the modified model. The
degeneracy due to the translation invariance of the model
is lifted according to standard perturbation theory. One
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Fig. 19. Binding energy (dashed lines) and tunnelling energy Tb versus U for the quantum bipolaron ground-state at t = 0.04
(left) and t = 0.095 (right) for C = 0.3 and α = 0.017 calculated by the perturbative method (thick lines) and the HTEA
method (thin lines).

gets a tight binding model as in Section 3 which yields
both binding and tunnelling energies of the quantum
ground-state (Fig. 19) shows these quantities for a strong
coupling (C = 0.3).

The binding energy of the bipolaron refers to two
non-interacting polarons calculated with the HTEA
method, which is the most accurate. For a single polaron
condition (40) becomes∑

i

vPi = − 1
2(1− 2C)

(62)

and we choose to write the displacement as vP = D−1v
where v is given by

vi = −Bµ|ix|+|iy|. (63)

For a large enough phonon coupling C > 0.2, in the region
we investigate t < 0.1 the HTEA method only requires the
hybridization between a small polaron and a large polaron.
The almost second-order transition displayed by the TEA
at C = 0 occurs now at a larger t2p(α).

The binding energy of the quantum bipolaron is still
large in that region and one notices the optimal regime
where both tunnelling and binding energies have the same
value.

To obtain the optimal region, a fine tuning of the pa-
rameters is required because changing them slightly can
either reduce the binding energy so that the bipolaron be-
comes fragile against temperature or sharply increase its
effective mass, killing its quantum mobility.

Phonon dispersion favors the mobility of the bipolaron
because it extends the lattice distortion around the bipo-
laron (see Fig. 18) as well as the electronic wave function.
Classically, this effect is manifested by internal mode soft-
ening and by the depression of the Peierls-Nabarro energy

barrier (not calculated here see paper I [1]) between the
different bipolarons. As a result, when the lattice is quan-
tum the hybridization between the different bipolarons is
increased, which increases the band width and decreases
the effective mass.

The HTEA calculation (53) for the bipolaron confirms
these properties (see Fig. 19). Condition (52) becomes∑

n

vBn = − 1
(1− 2C)

(64)

and vB = D−1v where v is still given by equation (63).
In the vicinity of the (QS) region (see Fig. 19) the

effective mass of the HTEA for the bipolaron is about five
times larger than the effective mass computed with the
perturbative method, but the bipolaron mass is still very
small. The comparison of the binding energy calculated
with the two methods shows that the variational HTEA
method is not accurate in the area of the QS region. Indeed
the perturbative method gives a stronger binding energy
and thus it is variationally better. This is likely due to the
fact that when the bipolaron extends too much the TEA
is not accurate because the bipolaron shape is not well
approximated by the exponential.

Figure 19 shows for α = 0.017 the effective mass of the
bipolaron in the optimal regime that ranges not far from
100 bare electronic mass. We choose as an example the
realistic optical phonon frequency ~ω0 = 1× 10−1 eV and
to be in the optimal regime C = 0.3, α = 0.017 U = 0.25
t = 0.1 the initial parameter of Hamiltonian (1) must be
g = 3 × 10−2 eV E0 = 6 eV υ = 1.5 eV t = 0.6 eV
c = 0.3 eV. The tunnelling energy as well as the bipolaron
binding energy are about 6× 10−3 eV. With such charac-
teristic values and a bipolaron concentration not too large,
a superfluid state could be expected at relatively high
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temperatures, perhaps few hundred degrees K. This es-
timate neglects the bipolaron interactions, but when their
concentration becomes large these interactions cannot be
neglected, especially at half filling when there is one po-
laron per site. Close to this close packing regime the bipo-
laronic structure cannot exist anymore for sure. Instead, a
magnetic spatially ordered polaronic structures could oc-
cur. Further studies should investigate the situation with
large electron densities.

7 Concluding remarks

In some circumstances the bipolaron might become un-
usually light, which allows in principle the formation of
superconducting states at rather high temperature with
physically realistic parameters. This effect is due to the
degeneracy of several bipolaronic states in the adiabatic
limit for some specific regions of the phase diagram. In
this situation there are small Peierls Nabarro barriers and
phonon softening for the different bipolaronic states. Then
the quantum lattice fluctuations lift the degeneracy be-
tween the degenerate states and may yield very light hy-
bridized bipolarons, which however are well-bound.

We realized this situation in a modified Holstein-
Hubbard model, which involves both an electron-phonon
interaction and a direct repulsive electron-electron inter-
action.

The superconducting state of such very light bipo-
larons occurs for weak concentrations. When the concen-
tration becomes larger there are strong interactions be-
tween the bipolarons, which may both break them into
polarons and organize different structures (for example,
magnetic).

This situation may happen in superconducting
cuprates. In the undoped regime where the band of elec-
trons is half filled, the structure can be viewed as close-
packed polarons with an antiferromagnetic ordering. This
polaron structure should persist for low doping till a cer-
tain electron concentration where the holes are polaron
vacancies. For a sufficiently large doping the electron
concentration may become low enough in order that a
(first order) transition toward a superfluid of light quan-
tum bipolarons takes place. The real phenomenology
should be more complex because one should expect that
the model parameters depend on the doping and thus that
the system does not remain always close from the optimal
regime with strongly bonded light bipolarons but move
around this point. Otherwise, we suggested in [1] that in
some appropriate models the (QS) bipolaron could have
a d-symmetry. We have not yet realized an explicit model
where such an effect occurs, but we hope to.

The numerical techniques we used (Toyozawa Ex-
ponential Ansatz) and its improvement (HTEA) where
the hybridization between different states is taken into
account, turned out to be very efficient to study the
bipolaron mass. It should be developed to consider
models with many electrons. In [21] it was proven that at
adiabatic limit, the ground-state at large electron-phonon

coupling was bipolaronic. Variation of the exponential
ansatz may provide strong simplifications for these case
and a qualitative understanding of the many-polaron
problem first in the adiabatic limit, next with quantum
lattice fluctuations. Finally, the problem of quantization
of discrete breathers can be approached with similar tech-
niques [22].
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